试验数据的方差分析

- м
 - 方差分析(analysis of variance,简称ANOVA)
 - □ 检验试验中有关因素对试验结果影响的显著性
 - 试验指标 (experimental index)
 - □衡量或考核试验效果的参数
 - 因素 (experimental factor)
 - □影响试验指标的条件
 - □ 可控因素(controllable factor)
 - 水平 (level of factor)
 - □因素的不同状态或内容

М

3.1 单因素试验的方差分析 (one-way analysis of variance)

- 3.1.1 单因素试验方差分析基本问题
 - (1) 目的: 检验一个因素对试验结果的影响是否显著性
 - (2) 基本命题:
- 设某单因素A有r种水平: A_1 , A_2 , ..., A_r , 在每种水平 下的试验结果服从正态分布
- 在各水平下分别做了 n_i (i=1, 2, ..., r) 次试验
- 判断因素A对试验结果是否有显著影响

(3) 单因素试验数据表

试验次数	$\mathbf{A_1}$	$\mathbf{A_2}$	•••	\mathbf{A}_{i}	• • •	\mathbf{A}_{r}
1	<i>x</i> ₁₁	x_{21}		x_{i1}		x_{r1}
2	x_{12}	x_{22}	•••	x_{i2}	•••	x_{r2}
•••	•••	•••	•••		•••	•••
$oldsymbol{j}$	x_{1j}	x_{2j}		x_{ij}		x_{rj}
•••	•••	•••	•••		•••	•••
n_i	x_{1n1}	x_{2n2}		\boldsymbol{x}_{ini}		x_{rnr}

3.1.2 单因素试验方差分析基本步骤

- (1) 计算平均值
- 组内平均值:

$$\frac{-}{x_i} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$$

■ 总平均:

$$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{r} \sum_{j=1}^{n_i} x_{ij}$$

М

(2) 计算离差平方和

①总离差平方和 SS_T (sum of squares for total)

$$SS_T = \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - \overline{x})^2$$

- 表示了各试验值与总平均值的偏差的平方和
- 反映了试验结果之间存在的总差异
- ②组间离差平方和 SS₄ (sum of square for factor A)

$$SS_A = \sum_{i=1}^r \sum_{j=1}^{n_i} (\overline{x}_i - \overline{x})^2 = \sum_{i=1}^r n_i (\overline{x}_i - \overline{x})^2$$

- 反映了各组内平均值之间的差异程度
- 由于因素A不同水平的不同作用造成的

М

③ 组内离差平方和 SS_e (sum of square for error)

$$SS_e = \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2$$

- 反映了在各水平内,各试验值之间的差异程度
- 由于随机误差的作用产生

三种离差平方和之间关系:

$$SS_T = SS_A + SS_e$$

(3) 计算自由度(degree of freedom)

- 总自由度: $df_T = n-1$
- 组间自由度: $df_{\Delta} = r-1$
- 组内自由度: $df_e = n r$

三者关系: $df_T = df_A + df_e$

(4) 计算平均平方

■ 均方=离差平方和除以对应的自由度

$$MS_A = SS_A / df_A$$
 $MS_e = SS_e / df_e$

 MS_A —组间均方

MS_e——组内均方/误差的均方

(5) F检验

$$F_A = \frac{\text{组间均方}}{\text{组内均方}} = \frac{MS_A}{MS_e}$$

- 服从自由度为 (df_A, df_e) 的F分布 (F distribution)
- 对于给定的显著性水平 α ,从F分布表查得临界值 $F_{\alpha}(df_{A}, df_{e})$
- 如果 $F_A > F_\alpha(df_A, df_e)$,则认为因素A对试验结果有显著影响否则认为因素A对试验结果没有显著影响

(6) 方差分析表

单因素试验的方差分析表

差异源	SS	df	MS	$oldsymbol{F}$	显著性
组间(因素A)	SS_A	<i>r</i> —1	$MS_A = SS_A / (r-1)$	MS_A/MS_e	
组内(误差)	SS_e	n —r	$MS_e = SS_e / (n - r)$		
总和	SS_T	<i>n</i> −1			

- 若 $F_A > F_{0.01}(df_A, df_e)$, 称因素A对试验结果有非常显著的影响,用 "**" 号表示;
- 若 $F_{0.05}(df_A, df_e) < F_A < F_{0.01}(df_A, df_e)$, 则因素A对试验 结果有显著的影响,用 "*" 号表示;
- 若 F_A < $F_{0.05}(df_A, df_e)$, 则因素A对试验结果的影响不显著

3.1.3 Excel在单因素试验方差分析中的应用

■ 利用Excel "分析工具库"中的"单因素方差分析"工具

3.2 双因素试验的方差分析

■ 讨论两个因素对试验结果影响的显著性,又称"二元方差分析"

3.2.1 双因素无重复试验的方差分析

(1) 双因素无重复试验

	B ₁	\mathbf{B}_{2}	•••	$\mathbf{B}_{\mathbf{s}}$
${f A_1}$	x_{11}	x_{12}	•••	x_{1s}
${f A_2}$	x_{21}	x_{22}	•••	x_{2s}
• • •	•••	• • •	•••	•••
$\mathbf{A_r}$	$x_{\rm r1}$	x_{r2}	•••	x _{rs}

(2) 双因素无重复试验方差分析的基本步骤

- ①计算平均值
- 总平均:

$$\overline{x} = \frac{1}{rs} \sum_{i=1}^{r} \sum_{j=1}^{s} x_{ij}$$

②计算离差平方和

■ 总离差平方和:

$$SS_T = \sum_{i=1}^r \sum_{j=1}^s \left(x_{ij} - \overline{x} \right)^2 = SS_A + SS_B + SS_e$$

■ 因素A引起离差的平方和:

$$SS_A = \sum_{j=1}^s \sum_{i=1}^r (\overline{x}_{i\bullet} - \overline{x})^2 = s \sum_{i=1}^r (\overline{x}_{i\bullet} - \overline{x})^2$$

■ 因素B引起离差的平方和:

$$SS_B = \sum_{i=1}^r \sum_{j=1}^s (\overline{x}_{\bullet j} - \overline{x})^2 = r \sum_{j=1}^s (\overline{x}_{\bullet j} - \overline{x})^2$$

■ 误差平方和: $SS_e = \sum_{i=1}^r \sum_{j=1}^s (x_{ij} - x_{i\bullet} - x_{\bullet j} + x_{\bullet})^2$

③计算自由度

- SS_A 的自由度: $df_A = r-1$
- SS_B 的自由度: $df_B = s 1$
- SS_e 的自由度: $df_e = (r-1) (s-1)$
- SS_T 的自由度: $df_T = n 1 = rs 1$
- $df_T = df_A + df_B + df_e$

④计算均方

$$MS_A = \frac{SS_A}{df_A} = \frac{SS_A}{r-1}$$
 $MS_B = \frac{SS_B}{df_B} = \frac{SS_B}{s-1}$

$$MS_e = \frac{SS_e}{df_e} = \frac{SS_e}{(r-1)(s-1)}$$

⑤F检验

$$F_A = \frac{MS_A}{MS_e} \qquad F_B = \frac{MS_B}{MS_e}$$

- F_A 服从自由度为 (df_A,df_c) 的F分布;
- F_B 服从自由度为 (df_B,df_e) 的F分布;
- 对于给定的显著性水平α,查F分布表:

$$F_{\alpha}$$
 (df_A,df_e), F_{α} (df_B,df_e)

- 若 $\mathbf{F}_{\mathbf{A}}$ > \mathbf{F}_{α} ($df_{\mathbf{A}}$, $df_{\mathbf{e}}$),则因素 \mathbf{A} 对试验结果有显著影响,否则无显著影响;
- 若 $\mathbf{F}_{\mathbf{B}}$ > \mathbf{F}_{α} ($df_{\mathbf{B}}$, $df_{\mathbf{e}}$),则因素 \mathbf{B} 对试验结果有显著影响,否则无显著影响;

⑥无重复试验双因素方差分析表

无重复试验双因素方差分析表

差异源	SS	df	MS	$oldsymbol{F}$	显著性
因素A	SS_A	r —1	$MS_A = \frac{SS_A}{r - 1}$	$F_A = \frac{MS_A}{MS_e}$	
因素B	SSB	s —1	$MS_B = \frac{SS_B}{s - 1}$	$F_{B} = \frac{MS_{B}}{MS_{e}}$	
误差	SS _e	(r-1)(s-1)	$MS_e = \frac{SS_e}{(r-1)(s-1)}$		
总和	SS _T	rs —1			

3.2.2 双因素重复试验的方差分析

(1) 双因素重复试验方差分析试验表

双因素重复试验方差分析试验表

因素	\mathbf{B}_{1}	$\mathbf{B_2}$	• • •	$\mathbf{B}_{\mathbf{s}}$
$\mathbf{A_1}$	$X_{111}, X_{112},, X_{11c}$	$x_{121}, x_{122}, \dots, x_{12c}$	•••	$X_{1s1}, X_{1s2},, X_{1sc}$
$\mathbf{A_2}$	$x_{211}, x_{212},, x_{21c}$	$x_{221}, x_{222},, x_{22c}$	•••	$x_{2s1}, x_{2s2},, x_{2sc}$
• • •	• • •	• • •	• • •	•••
$\mathbf{A}_{\mathbf{r}}$	$X_{r11}, X_{r12},, X_{r1c}$	$X_{r21}, X_{r22},, X_{r2c}$	•••	$X_{rs1}, X_{rs2},, X_{rsc}$

(2) 双因素重复试验方差分析的基本步骤

①计算平均值

总平均:
$$\overline{x} = \frac{1}{rsc} \sum_{i=1}^{r} \sum_{j=1}^{s} \sum_{k=1}^{c} x_{ijk}$$

B_j水平时:
$$\overline{x}_{\bullet j\bullet} = \frac{1}{rc} \sum_{i=1}^{r} x_{ijk}$$

②计算离差平方和

总离差平方和:

$$SS_T = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^c (x_{ijk} - \overline{x})^2 = SS_A + SS_B + SS_{A \times B} + SS_e$$

- 因素A引起离差的平方和: $SS_A = sc\sum_{i=1}^r (\overline{x_i} \overline{x_i})^2$ 因素B引起离差的平方和: $SS_B = rc\sum_{j=1}^s (\overline{x_j} \overline{x_j})^2$
- 交互作用A×B引起离差的平方和:

$$SS_{A\times B} = c\sum_{i=1}^{r} \sum_{j=1}^{s} (\overline{x_{ij\bullet}} - \overline{x_{i\bullet\bullet}} - \overline{x_{\bullet j\bullet}} + \overline{x})^{2}$$

■ 误差平方和: $SS_e = \sum_{i=1}^r \sum_{j=1}^s \sum_{i=1}^s (x_{ijk} - \overline{x}_{ij\bullet})^2$

③计算自由度

- SS_A 的自由度: $df_A = r-1$
- SS_B 的自由度: $df_B = s 1$
- $SS_{A\times B}$ 的自由度: $df_{A\times B} = (r-1)(s-1)$
- SS_e 的自由度: $df_e = rs(c-1)$
- SS_T 的自由度: $df_T = n 1 = rsc 1$
- $df_T = df_A + df_B + df_{A \times B} + df_e$

④计算均方

$$MS_A = \frac{SS_A}{r - 1}$$

$$MS_B = \frac{SS_B}{s-1}$$

$$MS_{A\times B} = \frac{SS_{A\times B}}{(r-1)(s-1)}$$

$$MS_e = \frac{SS_e}{rs(c-1)}$$

⑤F检验

$$F_{A} = \frac{MS_{A}}{MS_{e}}$$

$$F_{B} = \frac{MS_{B}}{MS_{e}}$$

$$F_{A \times B} = \frac{MS_{A \times B}}{MS_{e}}$$

- 若 $\mathbf{F}_{\mathbf{A}}$ > \mathbf{F}_{α} ($df_{\mathbf{A}}$, $df_{\mathbf{e}}$),则认为因素 \mathbf{A} 对试验结果有显著影响, 否则无显著影响;
- 若 $\mathbf{F}_{\mathbf{B}}$ > \mathbf{F}_{α} ($df_{\mathbf{B}}$, $df_{\mathbf{e}}$),则认为因素 \mathbf{B} 对试验结果有显著影响, 否则无显著影响;
- 若 $\mathbf{F}_{\mathbf{A}\times\mathbf{B}}$ > \mathbf{F}_{α} ($df_{\mathbf{A}\times\mathbf{B}}$, $df_{\mathbf{e}}$),则认为交互作用 $\mathbf{A}\times\mathbf{B}$ 对试验结果有显著影响,否则无显著影响。

М

⑥重复试验双因素方差分析表

有交互作用双因素试验的方差分析表

差异源	SS	df	MS	F	显著性
因素 A	SS_A	r —1	$MS_A = \frac{SS_A}{r-1}$	$F_{A} = \frac{MS_{A}}{MS_{e}}$	
因素 B	SS _B	s —1	$MS_B = \frac{SS_B}{s-1}$	$F_{B} = \frac{MS_{B}}{MS_{e}}$	
交互作用 A×B	SS _{A×B}	(r-1) (s-1)	$MS_{A \times B} = \frac{SS_{A \times B}}{(r-1)(s-1)}$	$F_{A\!\times B} = \frac{MS_{A\!\times B}}{MS_e}$	
误差	SS.	rs (c-1)	$MS_e = \frac{SS_e}{rs(c-1)}$		
总和	SS_T	rsc −1			

3.2.3 Excel在双因素方差分析中的应用

- (1) 双因素无重复试验方差分析
- 利用"分析工具库"中的"无重复双因素方差分析"工具 (2) 双因素重复试验方差分析
- 利用"分析工具库"中的"重复双因素方差分析"工具